Ikatan Kovalen
Proses pembentukan kestabilan suatu atom tidak hanya melalui pelepasan dan penerimaan elektron, kenyataan kestabilan juga dapat dicapai dengan cara menggunakan elektron secara bersama. Bagaimana satu atom dapat menggunakan elektron terluarnya secara bersama. Atom Flor, memiliki nomor atom 7, sehingga memiliki 7 (tujuh) elektron yang berada pada dua tingkat energi yaitu energi pertama (kulit K) dan tingkat energi kedua yaitu kulit L, elektron terdistribusi pada orbital 1s2, 2s2 dan orbital p5. Pada orbital p, dua elektron dibedakan (biru gelap) berasal dari atom F sebelah kiri dan kanan, kedua atom itu dipergunakan agar konfigurasinya mengikuti gas mulia. Yang menunjukkan ikatan kovalen dari senyawa H2, dan adanya gaya tarik kovalen dari setiap inti atom H terhadap pasangan elektron, dan dapat ditarik kesimpulan bahwa gaya tarik-menarik bersih (netto) yang terjadi ketika setiap atom memberikan 1 (satu) elektron tidak berpasangan untuk dipasangkan dengan elektron dari atom yang lain, pada satu ruang kosong, maka pasangan elektron ditarik oleh kedua inti atom tersebut.
Ikatan kovalen terjadi karena atom-atom yang berikatan memiliki kelektronegatifan yang setara dan tidak memiliki kelebihan orbital kosong yang berenergi rendah.
Kondisi semacam ini tampak pada unsur-unsur non logam, paling tidak terdapat antara 4 (elektron) sampai 8 (delapan) elektron yang berada pada kulit terluar. Beberapa pengecualian perlu diperhatikan khususnya untuk unsur H (hidrogen) elektron valensi 1s1 (satu elektron pada tingkat energi terendah, He (Helium) elektron 1s2 (dua elektron pada tingkat energi terendah. Demikianpula untuk B (Boron) memiliki 3 elektron valensi (2s2, 2p1), sehingga unsur non logam cenderung membentuk ikatan kovalen.
Beberapa unsur non logam yang membentuk senyawa kovalen seperti, Hidrogen (H), Karbon (C), Nitrogen (N), Oksigen (O), Posfor (P), Sulfur atau Belerang (S) dan Selenium (Se). Atas dasar kemampuan menarik atau melepas elektron, umumnya muatan dari unsur-unsur non logam adalah +4, -4, -3, -2 dan -1. Panggambaran ikatan kovalen didasari pada kaidah oktet (delapan) atau octet rule, menurut kaidah ini elektron valensi berjumlah delapan (s2 dan p6) sebagai bentuk kestabilan dari konfigurasi gas mulia, sehingga jumlah 8 (delapan) elektron merupakan jumlah yang harus dipenuhi untuk membentuk ikatan kovalen, kecuali untuk hidrogen hanya dua elektron. Lewis memperkenalkan cara penulisan ikatan dan senyawa kovalen, pasangan elektron yang dipergunakan bersama digambarkan sebagai garis lurus. Ikatan kovalen dapat terbentuk dari beberapa pasangan elektron, seperti tunggal contohnya F2 atau H2, namun dapat pula terjadi rangkap dua seperti pada molekul gas CO2, dan rangkap tiga terjadi gas astilen C2H2.
Pada molekul CO2, atom Karbon menyumbangkan 2 (dua) elektron untuk setiap atom oksigen, demikianpula dengan atom oksigen masing-masing memberikan 2 (dua) elektronnya. Untuk molekul C2H2, dua atom Karbon saling memberikan 3 (tiga elektronnya) sehingga terjadi tiga pasangan elektron, dan setiap atom Karbon juga menyumbangkan satu elektronnya ke atom hidrogen, sedangkan kedua atom hidrogen, masing-masing memberikan satu elektronnya kepada karbon dan membentuk 2 (dua) pasangan elektron.
Secara teliti, jika kita amati ikatan kovalen antara dua atom yang berbeda akan terlihat bahwa salah satu inti atom lebih besar dari atom yang lainnya, misalnya air, yang disusun oleh satu atom oksigen dan dua atom H. Inti atom oksigen jauh lebih besar dan jumlah muatan protonnya juga lebih banyak, sehingga 2 pasang dari pasangan elektron yang dibentuk oleh atom H dan O akan lebih tertarik ke inti atom oksigen. Hal ini menyebabkan, atom oksigen lebih bermuatan negatif dan masing-masing atom hidrogen akan bermuatan sedikit postif, dengan demikian terjadi polarisasi muatan dalam senyawa tersebut, dan terbentuk dua kutub (positif dan negatif) atau dipol. Perbedaan muatan untuk senyawa dipol dinyatakan dalam momen dipol.
Perhitungan momen dipol didasari atas perbedaan keelektronegatifan dari atom-atom penyusunnya. Secara kualitatif kita dapat memprediksi terjadinya polarisasi muatan dan resultante momen dipol yang dapat dipergunakan untuk melihat sebaran dari muatan parsial positif dan parsial negatif, seperti yang ditunjukkan oleh molekul air, sulfur dioksida dan karbondioksida tampak bahwa untuk molekul air muatan parsial negatif terakumulasi di atom Oksigen, sama halnya dengan molekul sulfurdioksida. Berbeda dengan seyawa CO2 tidak terjadi polarisasi.
Posting Komentar